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Abstract
A growing interface subject to noise is described by the Kardar–Parisi–Zhang
equation or, equivalently, the noisy Burgers equation. In one dimension this
equation is analysed by means of a weak-noise canonical phase-space approach
applied to the associated Fokker–Planck equation. The growth morphology is
characterized by a gas of nonlinear soliton modes with superimposed linear
diffusive modes. We also discuss the ensuing scaling properties.

1. Introduction

Macroscopic phenomena far from equilibrium abound and include phenomena such as
turbulence in fluids, interface and growth problems, chemical reactions, processes in glasses
and amorphous systems, biological processes, and even aspects of economical and sociological
structures.

In recent years much of the focus of modern statistical physics and soft condensed
matter has shifted towards such systems. Drawing on the case of static and dynamic critical
phenomena in and close to equilibrium, where scaling, critical exponents, and the concept of
universality have so successfully served to organize our understanding and to provide a variety
of calculational tools, a similar approach has been advanced towards the much larger class
of nonequilibrium phenomena with the purpose of elucidating scaling properties and more
generally the morphology or pattern formation in a driven state.

In this context the noisy Burgers equation or the equivalent Kardar–Parisi–Zhang (KPZ)
equation, describing the nonequilibrium growth of a noise-driven interface, provide simple
continuum models of an open driven nonlinear system exhibiting scaling and pattern formation.

In one dimension the KPZ equation has the form (in a co-moving frame) [1, 2]
∂h

∂t
= ν ∇2h +

λ

2
(∇h)2 + η. (1)

Here h is the height field, ν a damping or viscosity characterizing the linear diffusive term,
λ a coupling strength for the nonlinear mode-coupling or growth term, and η a Gaussian white
noise, driving the system into a stationary state. The noise is correlated according to

〈η(xt)η(00)〉 = �δ(x)δ(t) (2)
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Figure 1. We depict the growth morphology of a growing interface in a system of size L. The
saturation width in the noise-driven stationary state is denoted by w0.
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Figure 2. We depict the interface width w(t) as a function of t . In the transient regime for
t � t0 ∼ Lz, w grows according to t ζ/z. In the stationary regime attained for t � t0, the width w
saturates to the value w0 ∼ Lζ .

and characterized by the noise strength �. In figure 1 we have depicted a realization of a
growing interface.

Assuming an initially flat interface, the width w(t, L) grows in time approaching the
saturation width w0 in the stationary regime. The dynamical scaling hypothesis [3, 4] then
asserts that

w(t, L) = LζFw(t/L
z) (3)

where ζ is the roughness exponent characterizing the morphology of the interface and z the
dynamic exponent describing the dynamical correlations. The scaling functionFw(u) (together
with ζ and z) defines the scaling universality class and has the limits Fw(u) → constant for
u → ∞ andFw(u) → uζ/z for u → 0. In figure 2 we have shown the time- and size-dependent
widthw(t, L). Similarly, applying the dynamical scaling hypothesis to the height correlations
in the stationary regime we have〈

(h(xt)− 〈h(xt)〉)(h(00)− 〈h(00)〉)〉 = x2ζ Fh(t/x
z) (4)

where the scaling function Fh obeys Fh(u) → constant for u → ∞ and Fh(u) → u2ζ/z for
u → 0.

In what follows it turns out that the local slope field u = ∇h is the appropriate variable in
terms of which to discuss the growth morphology of an interface. The height field h = ∫

dx u
is then an integrated variable sampling the slope fluctuations. In figure 3 we have depicted a
realization of the slope field. The dynamical scaling hypothesis for the slope field then reads

〈u(xt)u(00)〉 = x2ζ−2Fu(t/x
z) (5)

with limits Fu(u) → constant for u → ∞ and Fu(u) → u(2ζ−2)/z for u → 0.
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Figure 3. We depict the morphology of a growing interface in terms of the local slope. The slope
field fluctuates about zero.

The stochastic dynamics of the slope field is then according to equation (1) governed by
the noisy Burgers equation [5, 6]

∂u

∂t
= ν ∇2u + λu∇u + ∇η. (6)

This equation in the noiseless case for η = 0 was originally proposed by Burgers [7] in
order to model turbulence in fluids; note the similarity with the Navier–Stokes equation for
λ = −1.

The substantial conceptual problems encountered in nonequilibrium physics are in many
ways embodied in the KPZ–Burgers equations (1) and (6) describing the self-affine growth of an
interface subject to annealed noise arising from fluctuations in the drive or in the environment,
and these equations in one and higher dimensions have been the subject of intense scrutiny in
recent years owing to their paradigmatic significance within a field theory of nonequilibrium
systems [3, 4, 8–16].

Interestingly, the Burgers–KPZ equations are also encountered in a variety of other
problems such as randomly stirred fluids, dissipative transport in a driven lattice gas,
the propagation of flame fronts, the sine–Gordon equation, and magnetic flux lines in
superconductors. Furthermore, by means of the Cole–Hopf transformation the Burgers–KPZ
equations are also related to the problem of a directed polymer or a quantum particle in a
random medium and thus to the theory of spin glasses.

In a series of papers, the one-dimensional case defined by (6) has been analysed in an
attempt to uncover the physical mechanisms underlying the pattern formation and scaling
behaviour. Emphasizing that the noise strength � constitutes the relevant nonperturbative
parameter driving the system into a statistically stationary state, the method was initially based
on a weak-noise saddle-point approximation to the Martin–Siggia–Rose functional formulation
of the noisy Burgers equation [17–20]. This work was a continuation of earlier work based
on the mapping of a solid-on-solid model onto a continuum spin model [21]. More recently
the functional approach has been superseded by a canonical phase-space method deriving
from the canonical structure of the Fokker–Planck equation associated with the Burgers
equation [22–25]. In the present context we attempt to give a brief account of this approach
with emphasis on the physical interpretation.

2. The noisy Burgers equation

The noisy Burgers equation (6) has the form of a conserved nonlinear Langevin equation,
∂u/∂t = −∇j , with fluctuating current j = −ν ∇u − (λ/2)u2 − η. The hydrodynamical
origin of the Burgers equation, as reflected by the presence of the mode-coupling or convective
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term λu∇u, implies that the Burgers equation is invariant under the Galilean transformation

x → x − λu0t and u → u + u0 (7)

involving a shift of the slope field. Since the nonlinear coupling strength λ enters as a structural
constant in the symmetry group, it is invariant under scaling and a simple Kadanoff-type block
renormalization group argument in both space and time implies the dynamical scaling law

ζ + z = 2 (8)

providing a relationship between the roughness exponent and the dynamic exponent.
In the linear case for λ = 0 the Burgers equation takes the Edwards–Wilkinson (EW)

form [26]

∂u/∂t = ν ∇2u + ∇η (9)

i.e., a linear diffusion equation driven by conserved noise. This equation is easily decomposed
and analysed in terms of wavenumber modes uk = ∫

dx u(x) exp(−ikx), u∗
k = u−k . In the

noiseless case for η = 0 the field uk , governed by an overdamped oscillator equation, decays
according to uk ∝ exp(−νk2t); τk = 1/νk2 setting the spectrum of relaxation times. For η = 0
the slope field uk is driven into a noisy stationary state. Defining ukω = ∫

dt uk exp(iωt), the
stationary correlations are given by

〈ukωu−k−ω〉 = �k2

ω2 + (νk2)2
. (10)

We note that (10) in addition to the pole ω = iνk2, corresponding to the decaying mode, also
has a pole at ω = −iνk2, characterizing a growing mode. The noise in driving the equation
thus excites a growing diffusive mode and we have generally for a particular realization

u(xt) = (Ae−νk2t + Be+νk2t )eikx . (11)

In the stationary state the correlations are time-reversal invariant, requiring both growing and
decaying modes; this also follows from the Fokker–Planck analysis in section 3. From (10)
we also obtain the static correlations 〈u(x)u(0)〉 = �/2νδ(x), showing that u(x) is spatially
uncorrelated. Moreover, the stationary distribution has the form

Pst(u) ∝ exp

[
− ν

�

∫
dx u(x)2

]
. (12)

Comparing (10) with the scaling form (5), we also infer the scaling exponents ζ = 1/2 and
z = 2, characteristic of diffusion and defining the EW universality class. Also, noting that the
diffusive term in (9) can be derived from a free energy F = (1/2)

∫
dx u2, it follows that the

EW equation describes the fluctuations in an equilibrium system with temperature �/2ν, i.e.,
Pst = exp[−(2ν/�)F ].

Summarizing, in the linear case the elementary excitations are decaying and growing
nonpropagating diffusive modes. Since from (1) ∂〈h〉/∂t = ν ∇2〈h〉, the average height 〈h〉
decays to zero (with respect to the co-moving frame) and the diffusive modes do not represent
nonequilibrium growth but in fact characterize equilibrium fluctuations at the temperature
�/2ν. Finally, the exponents ζ = 1/2 and z = 2 for the EW universality class reflect the
uncorrelated slope field, or the random walk of the integrated slope, i.e., the height h, and the
diffusional character of the dynamics, respectively.

In the nonlinear case for λ = 0 the Galilean invariance (7) becomes operational and
we can draw some simple conclusions concerning a growing interface. First, imposing a
constant shift u0 (7) implies that the tilted height field propagates with velocity λu0 as shown
in figure 4. Next, considering a step in the slope field with amplitudes u1 and u2 propagating
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Figure 4. We show the slope and height fields for a constant shift u0. The sloped height profile
then moves with velocity λu0.
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Figure 5. We show a step profile in the slope field with amplitudes u1 and u2. The step moves with
mean velocity v = (v1 + v2)/2, where v1 = λu1 and v2 = λu2 are the velocities of the plateaus.
The mode corresponds to the slope-dependent velocity of the height field subject to growth.

with velocities v1 = λu1 and v2 = λu2, it follows that the step itself propagates with mean
velocity v = (v1 +v2)/2. For the height field this corresponds to the part with the largest slope
moving with the largest velocity in accordance with the slope-dependent growth velocity in the
KPZ equation (1), i.e., ∂〈h〉/∂t = (λ/2)〈(∇h)2〉 > 0. These kinds of localized mode giving
rise to growth are indeed supported by the Burgers equation which possesses a spectrum of
soliton modes. The configuration is depicted in figure 5.

In the noiseless case for η = 0 the Burgers equation supports a right-hand single-soliton
solution, in the static case of the kink-like form

u(x) = u0 tanh
λu0

2ν
(x − x0) (13)

localized at x0, with amplitude u0, and width 2ν/λu0. Boosting the soliton to a finite velocity,
this mode corresponds to the configuration depicted in figure 5. Denoting the right- and
left-hand boundaries by u+ and u−, respectively, we also infer the soliton condition

u+ + u− = −2v/λ. (14)

The relaxing growth morphology of the noiseless Burgers equation corresponding to the de-
terministic transient growth of the KPZ equation can be described by a gas of propagating
right-hand solitons, connected by constant-slope ramp solutions, and with a spectrum of super-
imposed decaying linear modes. In the height field this morphology corresponds to downward
cusps connected by parabolic segments with superimposed linear modes [1, 2, 27, 28].

In the noisy case the interface is driven into a stationary state, and anticipating the analysis
in section 3, it turns out that the noise excites a left-hand soliton of the shape

u(x) = −u0 tanh
λu0

2ν
(x − x0). (15)

This mode is a solution of the growing noiseless Burgers equation for ν → −ν. This doubling
of modes is equivalent to the linear case where the mode has the form (11). The stationary
growth morphology can thus be described by a gas of right-hand and left-hand solitons matched
by the soliton condition (14) with superposed linear modes.
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The Fokker–Planck equation for the Burgers equation has the form

�
∂P

∂t
= HP (16)

where P is the probability distribution andH a Hamiltonian (Liouvillean) driving the equation
of the form

H = −�
∫

dx
δ

δu
(ν ∇2u + λu∇u) +

1

2
�2

∫
dx dx ′ ∇ ∇′δ(x − x ′)

δ2

δu δu
. (17)

Whereas (16) will be discussed in more detail in section 3, it follows easily that the stationary
solution of (16) has the form in (12) [29], independent of λ, and we infer as in the linear case
ζ = 1/2. The scaling law (8) then implies the dynamic exponent z = 3/2.

Summarizing, in the Burgers case the elementary excitations are propagating right-hand
and left-hand solitons with superimposed linear modes. The soliton propagation corresponds
to nonequilibrium growth. Finally, the scaling exponents ζ = 1/2 and z = 3/2 defining the
Burgers/KPZ universality class correspond to the uncorrelated slope field or random walk of
h and to soliton propagation, respectively.

3. The weak-noise approach

Apart from numerical modelling and analysis of other models falling in the same universality
class, the standard analytical approaches to the noisy Burgers equation are (i) the dynamical
renormalization group (DRG) method and (ii) the mode-coupling (MC) approach. The DRG
method accesses the scaling regime and provides an epsilon expansion about d = 2. Above
d = 2 the system exhibits a kinetic phase transition from a smooth phase with EW exponents
to a rough phase controlled by a strong-coupling fixed point with largely unknown scaling
exponents. For d = 1 the scaling is controlled by a strong-coupling fixed point and the
DRG yields (fortuitously) the known scaling exponents. Unlike the success of the DRG in
dynamical critical phenomena, the results obtained for the noisy Burgers equation are limited
despite a substantial theoretical effort. The MC method, by neglecting (unrenormalized) vertex
corrections, provides closed equations yielding scaling functions. However, the somewhat
ad hoc nature of the MC approach makes it difficult to make contact with more systematic
approaches.

The functional or the equivalent phase-space approach valid in the weak-noise limit,
� → 0, replaces the stochastic Langevin-type Burgers equation (6) by coupled deterministic
diffusion–advection-type mean-field equations:

∂u

∂t
= ν ∇2u− ∇2p + λu∇u (18)

∂p

∂t
= −ν ∇2p + λu∇p (19)

for the slope u(x, t) and a canonically conjugate noise field p(x, t), replacing the stochastic
noise η(x, t). The field equations bear the same relation to the Fokker–Planck equation (16) as
the classical equations of motion bear to the Schrödinger equation in the semi-classical WKB
approximation.

To justify the weak-noise limit we recall the analogy with the WKB approximation in
quantum mechanics which, owing to its nonperturbative character, captures features like
bound states and tunnelling amplitudes, which are generally inaccessible to perturbation theory.
Therefore, we anticipate that the present weak-noise approach to the Burgers equation also
accounts correctly, at least in a qualitative sense, for the stochastic properties even at larger
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noise strength. However, there may be an upper threshold value beyond which the system may
enter a new stochastic or kinetic phase. In the one-dimensional case discussed here, the scaling
behaviour is controlled by a single strong-coupling fixed point which can be accessed by the
present weak-noise approach. In two and higher dimensions a dynamic renormalization group
analysis predicts a kinetic phase transition at a critical noise strength (or coupling strength)
and the weak-noise approach presumably fails.

The equations (18) and (19) derive from a principle of least action characterized by an
action S(u′ → u′′, t) for an orbit u′(x) → u′′(x) traversed in time t :

S(u′ → u′′, t) =
∫ t,u′′

0,u′
dt dx

(
p
∂u

∂t
− H

)
(20)

with Hamiltonian density

H = p
(
ν ∇2u + λu∇u− 1

2 ∇2p
)
. (21)

The action is of central importance in the present approach and serves as a weight function for
the noise-driven nonequilibrium configurations in much the same manner as the energy E in
the Boltzmann factor exp(−βE) for equilibrium systems, where β is the inverse temperature.
The dynamical action in fact replaces the energy in the context of the dynamics of stochastic
nonequilibrium systems governed by a generic Langevin equation driven by Gaussian white
noise. The action provides a methodological approach and yields access to the time-dependent
and stationary probability distributions:

P(u′ → u′′, t) ∝ exp

[
−S(u′ → u′′, t)

�

]
(22)

Pst(u
′′) = lim

t→∞P(u′ → u′′, t) (23)

and associated moments, e.g., the stationary slope correlations

〈u(xt)u(00)〉 =
∫ ∏

du u′′(x)u′(0)P (u′ → u′′, t)Pst(u
′). (24)

The contact with the Fokker–Planck equation (16) in the weak-noise limit is established
by noting that (22) inserted in (16) to leading order yields the Hamilton–Jacobi equation
∂S/∂t + H(p, u) = 0 with canonical momentum p = δS/δu, where the Hamiltonian
H = ∫

dxH.
The canonical formulation yields the conserved energyE (following from time translation

invariance), the conserved momentum$ (from space translation invariance), and the conserved
area M (from the Burgers equation with conserved noise):

E =
∫

dxH (25)

$ =
∫

dx u∇p (26)

M =
∫

dx u. (27)

The field equations (18) and (19) determine orbits in a canonical u–p phase space where
the dynamical issue in determining S and thus P is to find an orbit from u′ to u′′ in time t , p
being a slaved variable. Note that unlike in dynamical system theory we are not considering the
asymptotic properties of a given orbit. In general, the orbits in phase space lie on the manifolds
determined by the constants of motion E, $, and M . Here the zero-energy manifold E = 0
plays a special role in defining the stationary state. For vanishing or periodic boundary condi-
tions for the slope field, the zero-energy manifold is composed of the transient submanifolds
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Figure 6. Generic behaviour of the orbits in u–p phase space. Heavy lines indicate the zero-energy
manifold. The stationary saddle point (sp) is at the origin. The finite-time orbit from u′ to u′′ is
attracted to the saddle point for t → ∞.

p = 0 and the stationary submanifold p = 2νu. The zero-energy orbits on the p = 0 manifold
correspond to solutions of the damped noiseless Burgers equation; the orbits on the p = 2νu
manifold are solutions of the undamped noiseless Burgers equation with negative damping,
i.e., ν replaced by −ν. In the solvable linear case of the noise-driven diffusion equation for
λ = 0, i.e., the EW equation [26], a finite-energy orbit from u′ → u′′ in time t migrates to the
zero-energy manifold in the limit t → ∞, yielding according to (20) and (23) the stationary
distributionPst ∝ exp(−(ν/�) ∫ dx u2). This distribution also holds in the Burgers case and is
a generic result independent of λ [29]. Finally, in the long-time limit an orbit from u′ → u′′ is
attracted to the hyperbolic saddle point at the origin in phase space, implying ergodic behaviour
in the stationary state. In figure 6 we have schematically depicted possible orbits in phase space.

In the linear case the field equations (18) and (19) couple p parametrically to u, i.e. p is
slaved. In wavenumber space pk is growing, whereas uk driven by pk is a linear superposition
of damped and growing diffusive modes, supporting the expression (11). In the nonlinear case
equations (18) and (19) admit nonlinear soliton or smoothed shock-wave solutions which are,
in the static case, of the kink-like form in (13) and (15). Propagating solitons are subsequently
generated by the Galilean boost (7) and we recover the soliton condition (14).

The right-hand soliton moves on the noiseless manifold p = 0 and is also a solution of
the damped (stable) noiseless Burgers equation for η = 0. The noise-induced left-hand soliton
is associated with the noisy manifold p = 2νu, and is a solution of the undamped (unstable)
noiseless Burgers equation with ν replaced by −ν. In addition the field equations also admit
linear mode solutions superimposed as ripple modes on the solitons. The ripple modes are
superpositions of both decaying and growing components reflecting the noiseless and noisy
manifolds p = 0 and 2νu, respectively. The soliton mode induces a propagating component
with velocity λu in such a way that the right-hand soliton acts like a sink and the left-hand
soliton as a source of linear modes [28]. This mechanism will be discussed heuristically in
section 4. In the EW limit for λ → 0 the ripple modes become the usual diffusive modes
(growing and decaying) of the driven stationary diffusion equation. In figure 7 we have shown
the right-hand and left-hand solitons.

The heuristic physical picture that emerges from our analysis, now supported by a weak-
noise analysis of the Fokker–Planck equation, is that of a many-body formulation of the pattern
formation of a growing interface in terms of a dilute gas of propagating solitons matched
according to the soliton condition (14) with superimposed linear ripple modes.
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Figure 7. Slope field u and height profile h for the right-hand and left-hand moving kink solitons
in the description of a growing interface.

4. A growing interface

As discussed above, a growing interface can be envisaged as a many-body system in the
Landau quasi-particle sense, composed of matched right-hand and left-hand solitons with
superimposed linear modes. Focusing on the solitons the right- and left-hand kinks are
the fundamental growth modes corresponding to cusps in the height field; they are the
quarks in the present formulation. They do not, however, satisfy periodic or vanishing
boundary conditions in the slope field u; the nonvanishing boundary values u+ and u− in fact
correspond to a deterministic current dissipated or generated at the soliton centres yielding
permanent profile solutions. The simplest mode satisfying periodic boundary conditions
is the two-soliton or pair soliton configuration obtained by matching a right-hand and a
left-hand soliton boosted to the velocity v = −λu. The two-soliton mode has amplitude
2u and size &. By inspection, it is seen that the pair mode is an approximate solution to
the field equations (18) and (19). The correction terms are of the type u∇u and u∇p
and thus correspond to local perturbations from a region of size ν/λ|u| which is small in
the low-viscosity limit ν → 0. We assume that the correction can be treated within a
linear stability analysis and thus gives rise to a linear mode propagating between the right-
hand and left-hand solitons. This property is borne out by a recent numerical analysis of
the field equations [30]. As also shown in the numerical analysis, the pair mode forms a
long-lived excitation or quasi-particle in the many-body description of a growing interface.
Subject to periodic boundary conditions this mode corresponds to a simple growth situation.
The propagation of the pair mode corresponds to the propagation of a step in the height
field h. At each revolution of the pair mode, the interface grows by a uniform layer
of thickness 2u&. In figure 8 we have depicted the pair mode and the associated height
profile h.

The soliton picture also allows us easily to understand in what sense the right-hand soliton
acts like a drain and the left-hand soliton as a source with respect to perturbations. Considering
two pair solitons superimposed on the right and left horizontal parts of the static solitons (13)
and (15), it follows from (14) that for a right-hand soliton perturbations move toward the
soliton centre and for a left-hand soliton perturbations move away from the soliton centre.
This mechanism also follows from the linear analysis of ripple modes [28]. The mechanism
is depicted in figure 9.
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Figure 8. The slope field and the resulting height profile for a soliton pair configuration.

x
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Figure 9. The source and drain mechanism for the right-hand and left-hand solitons. The
perturbations attracted and repelled by the soliton centres are modelled by pair solitons.

Generally a growing interface, ignoring the superimposed linear ripple modes, can at a
given time instant be represented by a gas of matched left-hand and right-hand solitons as
depicted in figure 10 in the four-soliton case. A gas of pair solitons thus constitute a particular
growth mode where the height profile between moving steps has horizontal segments.

5. Dynamics, statistics, and scaling

There are two levels of description: the stochastic Langevin level and the deterministic Fokker–
Planck or equations-of-motion level. On the Fokker–Planck level yielding the canonical field
equations (18) and (19), the growth of the interface is interpreted in terms of a gas of propagating
solitons (and diffusive modes). The stochastic description on the Langevin level is then
established in the weak-noise limit � → 0 by computing the action S associated with a
particular dynamical mode and subsequently deducing the probability distribution according
to (22), i.e., P ∝ exp(−S/�). This procedure is completely equivalent to the WKB limit of
quantum mechanics. Here the wavefunction' and thus the probabilistic interpretation is given
by' ∝ exp(iS/h̄), where S is the action associated with the classical motion. Note that unlike
in quantum mechanics there is no phase interference in the stochastic nonequilibrium case.
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Figure 10. The four-soliton representation of the slope field and the height profile.

E~Π3/2

E

Π

Figure 11. The dispersion law for the noise-induced left-hand soliton.

5.1. Dynamics

The canonical phase-space approach discussed in section 3 associates a formal dynamics with
the soliton–diffusive mode gas representation of a growing interface. According to (25)–
(27), the total energy, momentum, and area are conserved in the course of the dynamical
evolution of an interface on the deterministic Fokker–Planck level as determined by the field
equations (18) and (19). Since the symplectic structure via the Fokker–Planck equation is
associated with the noisy case, only the noise-induced left-hand soliton and, similarly, the
growing linear mode, carries dynamical attributes. By inspection, the static soliton (15) thus
has the energy E = −(16/3)λνu3

0 and momentum $ = 0. Correspondingly, the moving pair
soliton excitation depicted in figure 8 is endowed with the same energy but has momentum
$ = 4νu|u| pointing in the same direction as the velocity; it moreover conserves the area
under propagation. Eliminating the amplitude dependence, the dynamical characteristics of
the left-hand soliton are conveniently given by the soliton dispersion law

|E| = 2

3

λ

ν1/2
$3/2. (28)

We note the fractional power arising from the nonlinear character of the soliton; the dispersion
law is shown in figure 11.
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5.2. Statistics

We consider here as a simple application the statistics of the long-lived pair soliton shown
in figure 8. It has size &, amplitude 2u, and propagates with velocity v = −λu. During a
revolution in a system of size L with periodic boundary conditions, the height field increases
with a layer of thickness 2u&. Since the system is traversed in time t = L/v the integrated
growth velocity is given by 2λu2&/L, which for a single pair of fixed size vanishes in
the thermodynamic limit. On the other hand, the local growth velocity dh/dt is given by
2λu2 = (λ/2)(∇h)2 which is consistent with the averaged KPZ equation (1) in the stationary
state.

The stochastic properties of the pair soliton growth mode are easily elucidated by noting
that the action associated with the pair mode is given by S = (4/3)νλ|u|3t . Denoting the
centre of mass of the pair mode by x, we have u = v/λ = x/tλ and we obtain using (22) the
transition probability

P(x, t) ∝ exp

(
−4

3

ν

�λ2

x3

t2

)
(29)

for the ‘random walk’ of independent pair solitons or steps in the height profile. Comparing (29)
with the distribution for an ordinary random walk originating from the Langevin equation
dx/dt = η, 〈ηη〉(t) = �δ(t), P(x, t) ∝ exp(−x2/2�t), we observe that the growth mode
performs anomalous diffusion. The distribution (29) also implies the soliton mean square
displacement, assuming pairs of the same average size,

〈x2〉(t) ∝
(
�λ2

ν

)1/z

t2/z (30)

with dynamic exponent z = 3/2, identical to the dynamic exponent defining the KPZ
universality class. This result should be contrasted with the mean square displacement
〈x2〉 ∝ �t2/z, z = 2, for an ordinary random walk. The growth modes thus perform
superdiffusion.

5.3. Scaling

Aspects of the scaling properties of the noisy Burgers equation are embodied in the scaling
form (5) for the slope correlations. Here we give a set of heuristic arguments implying that
the dynamic scaling exponent z can be inferred from the exponent in the soliton dispersion
law (28); we refer the reader to [19, 31] for more details.

Within the weak-noise approximation the slope correlations are given by appropriate
overlap integrals involving the soliton configuration [31]. However, noting that the canonical
weak-noise formulation in general follows from a saddle-point approximation to the Martin–
Siggia–Rose functional integral, we infer that the slope correlation can also be expressed as the
time-ordered product [32] 〈u(xt)u(00)〉 ∝ 〈0|T û(xt)û(00)|0〉. Here the ‘quantum operators’
û and p̂ evolve according to the ‘quantum Hamiltonian density’ (21) and |0〉 denotes the zero-
energy stationary state. Displacing the field from (x, t) to (0, 0), using the Hamiltonian and
momentum operators, and inserting a complete set of intermediate quasi-particle momentum
states |$〉, we infer the spectral representation

〈u(xt)u(00)〉 ∝
∫

d$G($) exp(Et − i$x). (31)

HereG($) is an effective form factor andE and$ the energy and momentum of the appropriate
quasi-particle.
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The scaling limit for large x and large t corresponds to the bottom of the quasi-particle
spectrum and we note that only gapless excitations contribute. Assuming a general dispersion
law with exponentβ,E ∝ $β , the dynamic exponent z is given by the exponentβ for the quasi-
particle dispersion law. In the linear EW case the gapless diffusive dispersion law E ∝ $2

yields the dynamic exponent z = 2; in the Burgers–KPZ case the noise excites a new nonlinear
gapless soliton mode with dispersion E ∝ $3/2, yielding the exponent z = 3/2.

6. Summary and conclusions

We have here summarized recent work on the growth morphology and scaling behaviour of
the noisy Burgers equation in one dimension. Using a canonical weak-noise approach to the
associated Fokker–Planck equation, we have discussed the growth morphology in terms of a
gas of nonlinear solitonic growth modes with superposed linear modes. We have, moreover,
associated the dynamic scaling exponent with the soliton dispersion law.

So far the nonperturbative weak-noise approach has only been implemented in the one-
dimensional case where the analysis is tractable. However, the weak-noise method is generally
applicable to generic Langevin equations driven by white noise and it remains to be seen
whether the approach also throws light on the higher-dimensional case.

References

[1] Kardar M, Parisi G and Zhang Y C 1986 Phys. Rev. Lett. 56 889
[2] Medina E, Hwa T, Kardar M and Zhang Y C 1989 Phys. Rev. A 39 3053
[3] Halpin-Healy T and Zhang Y C 1995 Phys. Rep. 254 215
[4] Barabasi A L and Stanley H E 1995 Fractal Concepts in Surface Growth (Cambridge: Cambridge University

Press)
[5] Forster D, Nelson D R and Stephen M J 1976 Phys. Rev. Lett. 36 867
[6] Forster D, Nelson D R and Stephen M J 1977 Phys. Rev. A 16 732
[7] Burgers J 1974 The Nonlinear Diffusion Equation (Boston, MA: Riedel)
[8] Krug J 1997 Adv. Phys. 46 139
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